
MULTI-TENANCY: THE ART OF HAPPY NEIGHBORS 

(AND HEALTHY BUDGETS) IN KAFKA & 

OPENSEARCH. MASTERING YOUR TENANCY 

STRATEGY. 

My IT journey began a little over 10 years ago as an operations support engineer. Back 

then, I was taking care of a small cluster of VMs running in a client's data center. 

Resource planning was fairly easy mathematically, but it was very long-term – a 

purchase order needed to be put in place for any additional hardware several months in 

advance. It needed to get necessary approvals; the servers had to be delivered and 

actually plugged into the rack to be connected to the wider ecosystem. I would 

frequently over-provision the fleet – just to be safe, as the feedback loop was extremely 

long. Fast forward 5 years – and magic happened. Now we have AWS and auto-scaling 

groups. I can get a new machine on demand; I can scale down whenever I need to. Life is 

simpler. 

But now questions pop up, almost greedily – can I do more with this? How much further 

can I bring down costs? Will my operational load decrease exponentially? 

I know that it wasn't just me asking these questions then – and 5+ years from that point, 

they are still relevant. I know almost every architectural discussion still starts with a 

question – how much can we make this system multi-tenant? 

Throughout my career I was an operations engineer, a software engineer, a DevOps 

engineer, an infrastructure engineer, and now a Director of Cloud Engineering at Pega. 

Don't let the title fool you though - I still treat heated architectural discussions as good 

cardio and prefer to look at code to understand how everything fits together in place of 

hearing someone else explain it (some people would call this "control freak"; other, 

nicer people would call it "curiosity"). Having that experience under my belt, in this 

article I would like to explore the trade-offs in the race for cost optimization and 

operational efficiency. I want to give you some philosophical considerations for choosing 

whether your system should be multi-tenant or single-tenant – and to what extent. 



My goal is that by the end of this article, you will have a framework at your fingertips – a 

checklist to go through when considering what to do with your own architecture and 

which path to take. Let's start by defining what multi-tenant and single-tenant systems 

mean. 

 

A single-tenant system provides each customer with their own dedicated instance of the 

software and its supporting infrastructure, including separate databases and application 

deployments. 

A multi-tenant system is trickier to define. In a nutshell, it is a single instance of a 

software application and its underlying infrastructure that serves multiple distinct 

customers (tenants). 

Yet, multi-tenancy can come in different shapes and forms on various layers. For 

instance, the runtime might be shared in a multi-tenant system, but databases can be 

separate for compliance purposes. If the database is shared, the data needs to be 

isolated logically and encrypted to prevent accidental cross-access. 

Cost is higher in single-tenant systems, but factors like blast radius, noisy neighbors, and 

troubleshooting may be easier to handle. 

In this article, I want to explore the choice between single-tenancy and multi-tenancy in 

terms of technologies we use at Pega – Kafka and OpenSearch. Both present unique 

challenges in three realms – security, resource contention, and operational complexity. 

I'll explore each in detail, starting with Kafka. 

KAFKA IN A MULTI-TENANT WORLD: YOU GET A QUOTA, AND YOU GET 

A QUOTA! 

While Kafka is not a technology designed for persistent, long-term storage, designing a 

secure, compliant, and performant configuration of Kafka does pose its set of 

challenges. 

SECURITY 

I frequently say I consider Kafka as a communication protocol. You have your consumers 

and producers that can communicate with one another using Kafka topics. So, what are 

the challenges when it comes to security in Kafka? 



Making sure only specific consumers and producers have access to particular topics. This 

can be done via ACLs – e.g., in a microservices setting, you can create a user for every 

microservice and configure ACLs accordingly for a service to be able to 

consume/produce from/to specific topics. Similarly, this can be used to separate by 

environment level – dev, stg, and prod would each get their own user and ACLs to 

provide data segregation between stages. 

Tenant message encryption – while in a single-tenant world, I would likely just encrypt 

traffic to Kafka in transit and the EBS volume itself, I would need to go a step further and 

encrypt the actual message payload per each tenant – meaning both the consumer and 

the producer would need to have access to the key to write or read the message. If 

latency is a big concern in your system, consider encryption/decryption times as part of 

your calculations. 

RESOURCE CONTENTION 

Resource contention is, in my experience, the most common hurdle in multi-tenant 

Kafka management. Several strategies to manage it include: 

QUOTAS 

Quotas are very efficient, albeit a convoluted mechanism in Kafka. The most common 

ones are network bandwidth quotas (limiting producers and consumers in terms of 

maximum data throughput) and request rate quotas (expressed as a percentage of 

network and I/O threads, prevent clients from overwhelming the brokers with too many 

requests). 

Both are set up per user per broker. 

Network bandwidth quotas will be limited, e.g., by AWS instance types. I.e., by EBS and 

Network bandwidth. EBS bandwidth is crucial here, since Kafka writes to the disk very 

greedily. E.g., for rg6.large and rg6.2xlarge, the sum of all producer and consumer byte 

rate quotas for all users connected to the Kafka cluster cannot exceed 4750Mi. 

Request rate quotas are trickier and will depend on the amount of network and I/O 

threads configured on your cluster. Request rate quotas limit the percentage of time a 

client can use the request handler and network threads of each broker during a specific 

time period. It's calculated via the following formula: ((num.io.threads + 

num.network.threads) * 100)%. For instance, if you have 3 I/O threads and 8 network 



threads, this value in your cluster will equal 1100% ((3+8)*100%). So, 1100% will be the 

value you can distribute among your users per broker. 

 

The quota every user will receive does not dictate their usage – it is the upper bound 

they will not be able to cross, thus allowing us to have governance and prevent noisy 

neighbors from disturbing those around them. 

There are different strategies to implement quotas, and there is no one approach. It 

depends on the predicted usage and criticality of every client. In a microservices world 

where each of the services has equal rights to Kafka, the best approach would be to 

distribute quotas equally among all services (that is, unless you deem a particular 

service more critical than the rest). Challenges will arise when new services are 

onboarded, since quotas will potentially need to be recalculated for everyone. 

If the system is multi-environment instead of multi-tenant (i.e. one end client uses the 

system, with all their environment types like dev, stg, and production using the same 

infrastructure), consider not binding production with any quotas, opting to only restrict 

the lower environments. This way, if a client's production needs more resources, it will 

be visible in Kafka server metrics instead of in request throttling. 

SEPARATE CLUSTERS TO HANDLE DEV & STG VS PROD WORKLOADS 

Another approach is to separate clusters by workload type – i.e., give production its own 

cluster while keeping lower environment types on a different cluster. The cons of this 

approach include increased cost and slightly different looking lower environments than 

production, so if you want to keep the testing as close to the real deal as possible, this 

might not be the way to go. 

OPERATIONAL COMPLEXITY 

All of the above play into the operational complexity. There are a few others. 

UPGRADES 

In Kafka, upgrades can be fairly painless. Clients can use an older Kafka client version 

than Kafka server version. Kafka is insanely backward compatible – when first starting to 

work with Kafka, I did a test with my team to check upgrades post-API/protocol breaking 

change which occurred in v. 0.10. We tested upgrade from Kafka 0.9.0.1 to 2.7.0 while 



producers were still writing to topics and consumers were still reading from them. The 

system was entirely stable, and everyone could still write and read messages. 

 

That being said, while everything is working, there is no guarantee everything would 

work quickly. During one of the incidents, for instance, we found a couple of consumers 

using an older Kafka client with our newer Kafka server – messages were being 

processed, yet we were seeing an odd lag adding sometimes even a second to total 

processing time. If you are upgrading your multi-tenant Kafka cluster to a newer version, 

consider how every tenant will have to be coordinated for the upgrade of their client. 

OBSERVABILITY 

One additional factor that makes multi-tenancy in Kafka more challenging is 

observability. On top of regular client and server metrics monitoring (e.g., broker and 

producer/consumer metrics), consider building out tenant-specific dashboards and 

quota monitoring dashboards. Ideally, the tenant-specific dashboard would include data 

from the client side (i.e., to see how long message processing takes from a client 

perspective) as well as from the server side (how long the server actually takes to 

process the message), along with throttling metrics to see if quotas are configured in 

accordance with usage. 

CAPACITY PLANNING & BLAST RADIUS 

The question of how the Kafka cluster is going to look like broker-wise is a common 

point. Choosing to scale vertically or horizontally is a great consideration. Luckily, unlike 

some other technologies, scaling down in Kafka with proper replication and partition 

reassignment is fairly easy, so one does not have to choose one or the other. 

So, how does one scale Kafka? As with quotas, there is no one right approach. 

Generally, Kafka is designed to scale out horizontally – with Zookeeper, a 500-broker 

cluster can function normally; with Kraft, theoretically, we can scale up to above 1000 

nodes. Observability for that amount of brokers will be challenging, so I would 

personally not go that far without explicit need. A common soft limit for partitions per 

broker is 4000, so an appropriate amount of brokers needs to be allocated to 

accommodate that, keeping in mind that the replication factor will increase the total 

number of partitions. 



In a multi-tenant world, everything you do will have a larger blast radius. When adding 

additional brokers, it is important to consider the load the cluster is under – during high 

load, adding brokers is not great because the new brokers aren't yet servicing requests, 

yet they're asking existing brokers to send data to them. Scaling vertically might actually 

be better in this scenario when we need a quick boost of performance. That being said, 

during broker resize, that broker will become unavailable for some time, which means 

less capacity until the resize happens. 

My rule of thumb is normally to provision more small to medium size nodes initially and 

upscale vertically during runtime if I need to. Since quotas are calculated per broker, this 

also gives me a higher absolute value to distribute between Kafka users. 

OPENSEARCH IN A MULTI-TENANT WORLD: INDEXING WITHOUT 

SECRETS 

Search is used to store persistent information, for indexing data. The key problem with 

search is data access and encryption. How to ensure data is encrypted but still 

searchable? 

SECURITY 

How do you search through fully encrypted data? You can encrypt the phrase and look 

up the hash, sure. But what if you want to search for a part of a phrase? You are unlikely 

to find that hash. And what about semantic search, where context and conceptual 

relevance also play a role? 

Up until recently, encryption was not possible for OpenSearch in the context of 

searching encrypted data. Therefore, most solutions that cared about data compliance 

had to opt to be single-tenant. 

This changed in the past year or so with the release of the Portal26 plugin. The plugin 

provides "encryption-in-use," meaning data remains encrypted even when actively 

being indexed and searched. This goes beyond traditional data-at-rest and data-in-

transit encryption. It enables the construction of encrypted search indexes and 

intercepts and transforms queries against protected data. The Portal26 plugin allows for 

index-level encryption keys. This enables storing multiple customers' data on the same 

node while ensuring complete data isolation between tenants. 



Of course, this involves a performance overhead, but it is not significant. 

RESOURCE CONTENTION 

 

In OpenSearch, similar to Kafka, resource contention is a key challenge in multi-tenant 

environments. Noisy neighbors can significantly impact the performance of the entire 

cluster. 

Key metrics to monitor include: CPU, memory, disk I/O, and network throughput at the 

node and index level. Strategies to minimize contention include: 

• Shard Allocation Awareness: Strategically distribute shards (the basic units of 

data storage in OpenSearch) across different nodes, availability zones, or even 

racks. This helps avoid "hot spots" and provides better fault tolerance. 

• Index Templates with Routing: Allow for automatically directing data for a 

specific tenant to certain node groups or even dedicated nodes. This approach 

enables prioritizing critical tenants or isolating those that generate the highest 

load. 

• Circuit Breakers: Built-in mechanisms in OpenSearch that prevent single, overly 

expensive queries from consuming all cluster resources, which could lead to 

instability. 

• Client-side Throttling/Rate Limiting: Enforcing limits on the client application to 

prevent a single tenant from sending too many queries in a short period. This is a 

proactive approach that protects the cluster from overload. 

• Dedicated Nodes: For the most critical or resource-intensive tenants, consider 

allocating dedicated data nodes, or even entire, smaller clusters. While this 

partially blurs the line between multi- and single-tenant, it is an effective isolation 

strategy. 

For cluster stability, it's typically observed that an OpenSearch cluster remains stable 

with up to 30,000 indices and 75,000 shards. In a multi-tenant setting, if we are 

expecting clients' data to grow, I would recommend provisioning a new multi-tenant 

cluster for subsequent clients once we reach about 40-50% of cluster capacity (index 

and shard-wise). This proactive approach accommodates for clients' growth and 

prevents operational complexity later, especially if you want to keep all particular 

client's data within one cluster, eliminating the need to move data between clusters. 



OPERATIONAL COMPLEXITY 

Operational complexity in multi-tenant OpenSearch is as high as in Kafka, and perhaps 

even higher due to the nature of indexing and searching. 

UPGRADES 

Upgrades in OpenSearch can be performed in a rolling fashion (zero downtime), but 

they require careful planning, especially in a multi-tenant environment. Changes in API, 

indexing behavior, or search logic can affect all tenants. Testing client compatibility and 

potential regressions is crucial. Coordinating client-side updates with each tenant can be 

a logistical nightmare. 

OBSERVABILITY 

Similar to Kafka, comprehensive observability is absolutely essential. In addition to 

standard cluster metrics (CPU, memory, disk, network) and indexing/search metrics, you 

need: 

• Tenant-Specific Dashboards: Visualize metrics specific to each tenant, such as: 

o Search Latency: Response time for queries for a given tenant. 

o Indexing Rates: How quickly data is being indexed for a given tenant. 

o Query Success/Failure Rates: Percentage of successful and failed queries. 

o Resource Consumption per Index/Tenant: Identify which tenant 

consumes the most resources. 

• Query Monitoring: Track expensive queries that can burden the cluster and 

attribute them to specific tenants to identify "noisy neighbors." 

CAPACITY PLANNING 

Capacity planning in OpenSearch focuses on the number and size of shards and nodes. 

OpenSearch scales horizontally by adding more data nodes. 

• Shard Management: An incorrect number of shards (too many small, too few 

large) can lead to performance issues and resource consumption. Each shard 

(and every copy of a shard) is a separate Lucene instance or process. Meaning 

that creation of many smaller shards will end up spinning off many Lucene 

instances that will consume CPU and memory. Too many shards can lead to 

unnecessary resource consumption and performance issues. 

Too many large shards are also not ideal. OpenSearch clusters frequently 

rebalance shards across nodes to maintain an even distribution of data and load. 



Moving very large shards during these rebalancing operations consumes more 

network bandwidth and CPU resources, making the process slower and 

potentially impacting cluster performance. When shards become excessively 

large, queries take longer to complete because each query has to process a larger 

volume of data within that single shard. Each search operation on a shard uses a 

single CPU thread, meaning that a larger data set on that shard will take longer to 

scan and process. Finding the right balance is key. 

• Impact of Schema Changes (Mapping): In a multi-tenant environment, where 

each tenant might have slightly different data schema requirements, managing 

and deploying changes to index mappings becomes complex and can affect many 

tenants simultaneously. 

CONCLUSION: CHOOSING YOUR PATH TO SUCCESS 

The journey through the labyrinth of multi-tenant and single-tenant architectures, 

especially in the context of technologies like Kafka and OpenSearch, reveals that there is 

no single, universal answer. As we've seen, security, resource contention, and 

operational complexity all present unique challenges that demand in-depth analysis and 

a strategic approach. 

Kafka, with its role as a communication protocol and durable event log, requires 

meticulous management of ACLs and consideration of message-level encryption for 

individual tenants. Resource contention can be mitigated using extensive quotas and 

intelligent capacity planning, but all of this adds to operational complexity, especially in 

the context of upgrades and observability. 

OpenSearch, as a powerful indexing and search tool, puts the challenge of data 

encryption in use at the forefront. Here, plugins like Portal26 become a game-changer, 

enabling secure searching of encrypted data. However, resource contention and 

operational complexity, stemming from managing shards, queries, and deploying 

updates, remain key points to consider. 

TIME FOR ACTION 

Now is the time to take this knowledge and apply it in practice. Instead of blindly 

following the trend of multi-tenancy or sticking to the safe haven of single-tenancy, ask 

yourself the following questions: 



1. What is the true cost of my current architecture? Do the financial benefits of 

multi-tenancy outweigh the potential operational costs and security risks? 

2. What are my security and compliance requirements? Do I have the tools (like 

Portal26) and processes that can meet these requirements in a shared 

environment? 

3. What is the expected load pattern and its variability? Will my tenants be "noisy 

neighbors," or can I effectively manage resource contention? 

4. What is the maturity level of my operational team? Are we ready for the added 

complexity of managing, monitoring, and troubleshooting in a multi-tenant 

environment? 

5. Do I have the right observability and automation tools to effectively scale and 

maintain such a complex system? 

BENEFITS WITHIN REACH 

By consciously approaching these questions and assessing the security, resource 

contention, and operational complexity of your architecture, you will build systems that 

are: 

• More Resilient: Better isolation and resource management minimize the risk of 

failures and disruptions. 

• More Cost-Effective: Optimal resource utilization translates into lower 

infrastructure bills. 

• More Secure: Well-thought-out security strategies protect your data and your 

customers' data. 

• Easier to Manage: Understanding complexity allows for proactive problem-

solving and efficient planning. 

The choice between multi-tenancy and single-tenancy is not an all-or-nothing decision 

but a spectrum of possibilities. Remember that even in a multi-tenant system, you can 

implement elements of single-tenant isolation in critical areas. The key is to understand 

the trade-offs and make conscious decisions that best serve your product and your 

customers. 

 


